A remark on left invariant metrics on compact Lie groups
نویسنده
چکیده
The investigation of manifolds with non-negative sectional curvature is one of the classical fields of study in global Riemannian geometry. While there are few known obstruction for a closed manifold to admit metrics of non-negative sectional curvature, there are relatively few known examples and general construction methods of such manifolds (see [Z] for a detailed survey). In this context, it is particularly interesting to investigate left invariant metrics on a compact connected Lie group G with Lie algebra g. These metrics are obtained by left translation of an inner product on g. If this metric is biinvariant then its sectional curvature is non-negative, and it is known that the set of inner products on g whose corresponding left invariant metric on G has non-negative sectional curvature is a connected cone; indeed, each such inner product can be connected to a biinvariant one by a canonical path ([T]). In the present article, it is shown that the stretching of the biinvariant metric in the direction of a subalgebra of g almost always produces some negative sectional curvature of the corresponding left invariant metric on G. In fact, the following theorem answers a question raised in [Z, Problem 1, p.9].
منابع مشابه
Einstein structures on four-dimensional nutral Lie groups
When Einstein was thinking about the theory of general relativity based on the elimination of especial relativity constraints (especially the geometric relationship of space and time), he understood the first limitation of especial relativity is ignoring changes over time. Because in especial relativity, only the curvature of the space was considered. Therefore, tensor calculations should be to...
متن کاملTechniques for Classifying Nonnegatively Curved Left-invariant Metrics on Compact Lie Groups
We provide techniques for studying the nonnegatively curved leftinvariant metrics on a compact Lie group. For “straight” paths of left-invariant metrics starting at bi-invariant metrics and ending at nonnegatively curved metrics, we deduce a nonnegativity property of the initial derivative of curvature. We apply this result to obtain a partial classification of the nonnegatively curved left-inv...
متن کاملEinstein Metrics on Compact Lie Groups Which Are Not Naturally Reductive
The study of left-invariant Einstein metrics on compact Lie groups which are naturally reductive was initiated by J. E. D’Atri and W. Ziller in 1979. In the present work we prove existence of non-naturally reductive Einstein metrics on the compact simple Lie groups SO(n) (n ≥ 11), Sp(n) (n ≥ 3), E6, E7, and E8.
متن کاملInvariant Metrics with Nonnegative Curvature on Compact Lie Groups
We classify the left-invariant metrics with nonnegative sectional curvature on SO(3) and U(2).
متن کاملar X iv : m at h - ph / 0 40 80 37 v 1 2 4 A ug 2 00 4 Integrable nonholonomic geodesic flows on compact Lie groups ∗
This paper is a review of recent results on integrable nonholonomic geodesic flows of left–invariant metrics and leftand right–invariant constraint distributions on compact Lie groups.
متن کامل